

- Ideal for 809.00 MHz Transmitters
- Very Low Insertion Loss
- Quartz Stability
- Rugged, Hermetic, Low Profile TO-39 Package
- Complies with Directive 2002/95/EC (RoHS Compliant)

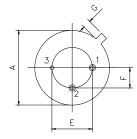
SR809

ABSOLUTE MAXIMUM RATING (T_A =25°C)						
Parameter		Rating	Unit			
CW RF Power Dissipation	Р	0	dBm			
DC Voltage	$V_{ m DC}$	±30	V			
Operating Temperature Range	T_{A}	-10 ~ +60	°C			
Storage Temperature Range	\mathcal{T}_{stg}	-40 ~ +85	°C			

ELECTRONIC CHARACTERISTICS						
	Parameter	Sym	Minimum	Typical	Maximum	Unit
Frequency (25°C)	Nominal Frequency	f_C	NS	809.00	NS	MHz
	Tolerance from 809.00 MHz	Δf_{C}	-	-	±150	KHz
Insertion Loss		IL	-	1.2	1.6	dB
Quality Factor	Unloaded Q-Value	Q_U	-	12,270	-	-
	50Ω Loaded Q-Value	Q_L	-	1,600	-	-
Temperature Stability	Turnover Temperature	To	25	-	55	°C
	Turnover Frequency	f_{O}	-	fc	-	KHz
	Frequency Temperature Coefficient	FTC	-	-0.032	-	ppm/°C2
Frequency Aging	Absolute Value during the First Year	$ f_A $	-	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	ΜΩ
RF Equivalent RLC Model	Motional Resistance	R _M	-	15.0	20.0	Ω
	Motional Inductance	L_M	-	36.2168	-	μН
	Motional Capacitance	C_M	-	1.0697	-	fF
	Pin 1 to Pin 2 Static Capacitance	Co	2.6	2.9	3.2	pF

NS = Not Specified

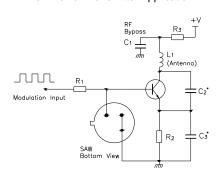
Notes:


- 1. The center frequency, f_C , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}\text{C} \pm 2^{\circ}\text{C}$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_C, may be calculated from: f = f₀ [1 - FTC (T₀ - T_C)²].
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.

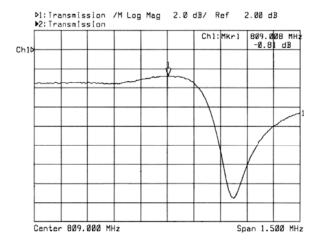
- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- For questions on technology, prices and delivery please contact our sales offices or e-mail to sales@vanlong.com.

PACKAGE DIMENSIONS (TO-39)

MARKING


Laser or Ink Marking Line 1: Part Number

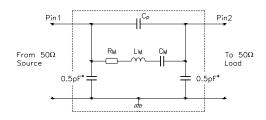
Line 2: Date Code


YY : Last 2 digits of year WW : Week No.

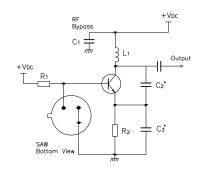
TYPICAL APPLICATION CIRCUIT

Low Power Transmitter Application

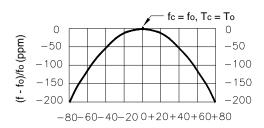
TYPICAL FREQUENCY RESPONSE


Electrical Connections

Terminals	Connection	
1	Input/ Output	
2	Output/ Input	
3	Case-Ground	


Package Dimensions

Dimensions	Nom (mm)		
Dilliensions	Min	Max	
Α	9.10	9.50	
В	3.20	3.60	
С	2.80	3.20	
D	Ф0.25	Ф0.65	
E	4.98	5.18	
F	2.54 Nominal		
G	0.4	0.5	


EQUIVALENT LC MODEL AND TEST CIRCUIT

Local Oscillator Application

TEMPERATURE CHARACTERISTICS

$$\Delta T = Tc - To (°C)$$

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Phone: +86 (10) 5820-3910 Fax: +86 (10) 5820-3915

Email: sales@vanlong.com

Web: http://www.vanlong.com