868.30 MHz Two-Port SAW Resonator

- Ideal for 868.30 MHz Transmitters
- Nominal Phase Shift of 180° at Resonance
- Quartz Stability
- Rugged, Hermetic, Low Profile TO-39 Package

SQ868M30

Absolute Maximum Rating (Ta=25°C)				
Parameter		Rating	Unit	
CW RF Power Dissipation	Р	10	dBm	
DC Voltage	V _{DC}	±30	V	
Operating Temperature Range	T _A	-10 ~ +60	٥C	
Storage Temperature Range	$T_{\rm stg}$	-40 ~ +85	°C	

Electronic Characteristics						
	Parameter	Sym	Minimum	Typical	Maximum	Unit
Frequency (25°C)	Nominal Frequency	f _C	NS	868.30	NS	MHz
	Tolerance from 868.30 MHz	Δf_C	-	-	± 150	KHz
Insertion Loss		IL	-	6.0	8.0	dB
Quality Factor	Unloaded Q-Value	Q_U	-	5,400	-	-
	50 Ω Loaded Q-Value	Q_L	-	2,700	-	-
Temperature Stability	Turnover Temperature	To	25	-	55	°C
	Turnover Frequency	fo	-	fc	-	KHz
	Frequency Temperature Coefficient	FTC	-	-0.032	-	ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f_	-	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	MΩ
RF Equivalent RLC Model	Motional Resistance	R _M	-	99.5	151.0	Ω
	Motional Inductance	L _M	-	98.7819	-	μH
	Motional Capacitance	C_M	-	0.3405	-	fF
	Pin 1 to Pin 2 Static Capacitance	Co	2.2	2.5	2.8	pF

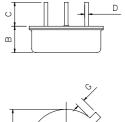
NS = Not Specified

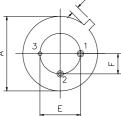
Notes:

- 1. The center frequency, f_{C} , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_c = +25^{\circ}C \pm 2^{\circ}C$.
- 3. Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c, may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.

- 6. Derived mathematically from one or more of the following directly measured parameters: f_C , *IL*, 3 dB bandwidth, f_C versus T_C , and C_0 .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery please contact our sales offices or e-mail to sales@vanlong.com.

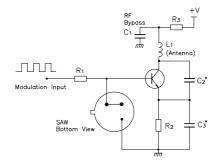
Phone: +86 10 6301 4184

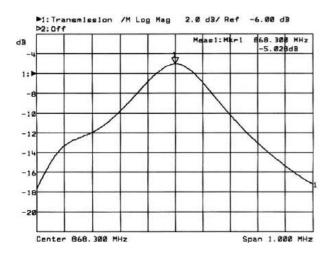

Fax: +86 10 6301 9167


Email: sales@vanlong.com

868.30 MHz Two-Port SAW Resonator

Package Dimensions (TO-39)


Marking


Ink Marking Color: Black or Blue

Typical Application Circuit

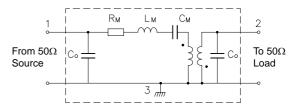
Low Power Transmitter Application

Typical Frequency Response

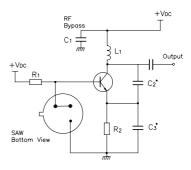
Phone:	+86	10	6301	4184	

Fax: +86 10 6301 9167

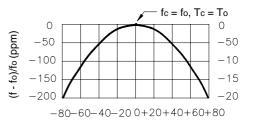
Web: http://www.vanlong.com


Electrical Connections

Terminals	Connection	
1	Input/ Output	
2	Output/ Input	
3	Case-Ground	


Package Dimensions

Dimensions	Nom (mm)		
	Min	Max	
A	9.10	9.50	
В	3.20	3.60	
С	2.80	3.20	
D	Ф0.25	Ф0.65	
E	4.98	5.18	
F	2.54 Nominal		
G	0.4	0.5	


Equivalent LC Model and Test Circuit

Local Oscillator Application

Temperature Characteristics

 $\Delta T=T_{c}-T_{0} \ (^{\circ}C)$ The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Email: sales@vanlong.com